Send to

Choose Destination
Biochemistry. 2001 Nov 27;40(47):14200-6.

The C-terminal tail of the dual-specificity Cdc25B phosphatase mediates modular substrate recognition.

Author information

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.


Cdc25 is a dual-specificity phosphatase that catalyzes the activation of the cyclin-dependent kinases (Cdk/cyclins), thus triggering initiation and progression of successive phases of the cell cycle. In our efforts to elucidate the interaction between Cdc25B and the natural substrate, bis-phosphorylated Cdk2/CycA (Cdk2-pTpY/CycA), we have previously found that the 17 residues of the C-terminal tail mediate a factor of 10 in substrate recognition. In the studies reported here, we localize the majority of this interaction using site-directed mutagenesis to two arginine residues (Arg556 and Arg562) located within this C-terminal region. We also show that the catalytic domain of Cdc25C, which differs most significantly from Cdc25B in this tail region, has a 100-fold lower activity toward Cdk2-pTpY/CycA. We further demonstrate that the proper presentation of the C-terminal tail of Cdc25B can be achieved in a "gain-of-function" chimeric protein consisting of the C-terminal tail of Cdc25B fused onto the catalytic core of Cdc25C. The >10-fold increase in activity seen only in the chimeric protein containing the two critical arginine residues demonstrates that the modular C-terminal tail of Cdc25B is the basis for most of the catalytic advantage of Cdc25B versus Cdc25C toward the Cdk2-pTpY/CycA substrate.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center