Send to

Choose Destination
See comment in PubMed Commons below
Nat Neurosci. 2001 Dec;4(12):1238-43.

Inducible, pharmacogenetic approaches to the study of learning and memory.

Author information

Departments of Neurobiology, Psychiatry and Psychology, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA.


Here we introduce a strategy in which pharmacology is used to induce the effects of recessive mutations. For example, mice heterozygous for a null mutation of the K-ras gene (K-ras+/-) show normal hippocampal mitogen-activated protein kinase (MAPK) activation, long-term potentiation (LTP) and contextual conditioning. However, a dose of a mitogen-activated/extracellular-signal-regulated kinase (MEK) inhibitor, ineffective in wild-type controls, blocks MAPK activation, LTP and contextual learning in K-ras+/- mutants. These indicate that K-Ras/MEK/MAPK signaling is critical in synaptic and behavioral plasticity. A subthreshold dose of NMDA receptor antagonists triggered a contextual learning deficit in mice heterozygous for a point mutation (T286A) in the alphaCaMKII gene, but not in K-ras+/- mutants, demonstrating the specificity of the synergistic interaction between the MEK inhibitor and the K-ras+/- mutation. This pharmacogenetic approach combines the high temporal specificity that pharmacological manipulations offer, with the molecular specificity of genetic disruptions.

[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center