Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2000 Winter;1(4):789-97.

Surface functionalization of porous glass networks: effects on bovine serum albumin and porcine insulin immobilization.

Author information

1
Department of Metallurgy and Materials Engineering, School of Medicine, Federal University of Minas Gerais, Rua Espirito Santo, 35/2 andar, Centro, Belo Horizonte, MG, Brazil. hmansur@demet.ufmg.br

Abstract

Biomolecules can be immobolized in many different ways. They can also be entrapped or tightly adsorbed within porous gels, clays, membranes, resins, and several other materials, but it is crucial that they retain their active conformation after the incorporation procedure. Porous gel matrixes with functionalized surfaces offer unlimited possibilities to control the protein-substrate interaction behavior. In the present work, we have studied the adsorption and the relative stability of bovine serum albumin (BSA) and porcine insulin(PI) incorporated in gels of SiO2 glass matrixes. The porous gel matrixes were obtained using tetramethoxysilane (TMOS)/metanol and functionalized with (3-mercaptopropyl) trimethoxysilane and (3-aminopropyl) triethoxysilane. The relative adsorption kinetics and stability of BSA and PI incorporated in glass networks were evaluated by immersion in phosphate buffer saline (PBS) and alkaline elution media for different periods of time. The kinetics of protein release from the gel matrix was monitored by UV-visible spectroscopy. A significantly larger PI release was observed compared to BSA in PBS solutions. We believe this is mainly associated with the difference on protein interactions with the modified surface, according to the characterization results of porosity, surface area, and contact angle of different functionalized gel matrixes. We could not observe any evidence of denaturation with either proteins after their desorption from gel matrixes using the ultraviolet spectroscopy technique. These results have also been confirmed with the strong bioactivity response from "in vivo" test conducted in rats, where porous gels with PI incorporated were implanted, showing that released proteins retained their native conformation.

PMID:
11710213
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center