Format

Send to

Choose Destination
Biochemistry. 2001 Nov 20;40(46):13964-71.

Transport-defective mutations alter the conformation of the energy-coupling motif of an outer membrane transporter.

Author information

1
Department of Chemistry and Biophysics Program, University of Virginia, Charlottesville, Virginia 22901, USA.

Abstract

The bacterial outer membrane transporter for vitamin B(12), BtuB, derives its energy for transport by interacting with the trans-periplasmic membrane protein TonB. This interaction with TonB occurs in part through an N-terminal segment in the BtuB sequence called the Ton box. In the present study, site-directed spin labeling of intact outer membrane preparations was used to investigate the conformation of the Ton box in wild-type BtuB and in two transport-defective mutants, L8P and V10P. In the wild-type protein, the Ton box is folded into the barrel of the transporter. The conformation of this segment is dramatically different in the transport-defective mutants L8P and V10P, where the Ton box is found to be flexible, and undocked from the transporter barrel with a greater exposure to the periplasm. In the wild-type protein, vitamin B(12) induces an undocking of the Ton box, but its addition to these transport defective mutants produces little or no change in the conformation of the Ton box. Proline substitutions at positions that do not alter transport do not alter the wild-type conformation of the Ton box; thus, the effect of substituting proline at positions 8 and 10 on the docked state of the Ton box appears to be unique. The failure of these mutants to execute the B(12) transport cycle may be a result of the altered conformation of the Ton box.

PMID:
11705387
DOI:
10.1021/bi015602p
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center