Format

Send to

Choose Destination
Dev Cell. 2001 Sep;1(3):389-99.

Phosphorylation of Mei2 and Ste11 by Pat1 kinase inhibits sexual differentiation via ubiquitin proteolysis and 14-3-3 protein in fission yeast.

Author information

1
Laboratory of Cell Regulation, Imperial Cancer Research Fund, United Kingdom. toda@icrf.icnet.uk

Abstract

Fission yeast Pat1 kinase inhibits sexual differentiation by phosphorylating the meiotic inducer Mei2 and the transcription factor Ste11. Here, we show how Pat1 downregulates these proteins. Mei2 is degraded via a ubiquitin-proteasome pathway in a phosphorylation-dependent fashion. The E2 Ubc2 and the E3 Ubr1 are required for this proteolysis. In addition, Pat1 negatively regulates Ste11 via Rad24/14-3-3, thereby repressing mei2+ transcription. The Pat1 phosphorylation sites of Ste11 match the consensus recognition sequence for 14-3-3. Rad24 binds preferentially to phosphorylated Ste11, and this binding results in inhibition of the transcriptional activation capacity of Ste11. Overall, therefore, these results show that Pat1 coordinates concerted molecular mechanisms that govern the sexual differentiation developmental decision.

PMID:
11702950
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center