Format

Send to

Choose Destination
See comment in PubMed Commons below
Leuk Lymphoma. 2001 Jul;42(3):291-9.

Telomere dynamics in myelodysplastic syndromes and acute leukemic transformation.

Author information

1
First Department of Internal Medicine, Tokyo Medical University, Department of Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 160-0023, Japan. ohyashik@rr.iij4u.or.jp

Abstract

Myelodysplastic syndromes (MDS) are characterized by cytopenias in the blood and dysplastic features in the hematopoietic cells. Although the impact of cytogenetic abnormalities is considerable for prognosis, the exact genetic mechanism of MDS remains undetermined. In this study we assessed cytogenetic changes, microsatellite alterations, and telomere dynamics in order to obtain further insight into the pathogenesis of MDS. Thirty-three percentage of MDS patients and 60% of post-MDS acute leukemia (post-MDS AML) had de novo microsatellite changes. In the MDS phase, however, > 60% of patients showed reduction of telomere lengths without microsatellite changes, indicating that telomere reduction in most MDS patients does not seem to be directly linked to genome instability, or that reduction of telomere length does not induce microsatellite changes in the MDS phase. Some MDS patients had microsatellite changes without telomerase elevation, indicating that genome instability might accumulate during the disease progression in some MDS patients, and this condition (cellular senescence) may be related to ineffective hemopoiesis in MDS patients. In contrast, 40% of post-MDS AML patients had elevated telomerase activity with microsatellite changes, indicating that approximately 40% of patients with post-MDS AML patients had accumulation of genome instability resulting in elevated telomerase activity in an attempt to obtain genetic stability. However, the remaining MDS patients had microsatellite changes without telomerase up-regulation, suggesting that some MDS had genome instability even after leukemic transformation. Most MDS patients with elevated telomerase activity in the AML phase had elevated telomerase activity even in the MDS phase without apparent change in telomere length before and after leukemic transformation. These findings indicate that telomerase activity in the MDS phase may be independent of telomere length, although telomere shortening seems to be related to genomic instability, and this process may be linked to apoptosis of MDS cells.

PMID:
11699393
DOI:
10.3109/10428190109064585
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center