Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2001 Nov;14(5):1159-67.

Pharmacological MRI mapping of age-associated changes in basal ganglia circuitry of awake rhesus monkeys.

Author information

Department of Anatomy & Neurobiology, University of Kentucky, Lexington, Kentucky 40536, USA.


While the pathophysiological changes induced by the loss of dopamine innervation in the basal ganglia by Parkinson's disease (PD) are well studied, little is known about functional changes in the neural circuitry of this area during normal aging. Here we report the first survey of age-associated changes in the basal ganglia of behaviorally characterized, awake rhesus monkeys, using pharmacological MRI to map responses to dopaminergic stimulation. Apomorphine, a mixed D(1)/D(2) dopamine receptor agonist, evoked little change in the substantia nigra (SN) of aged animals while significantly reducing activation in young adult monkeys. Compared to young animals, both apomorphine and d-amphetamine (which increases synaptic dopamine levels) significantly increased activation of the aged rhesus globus pallidus externa (GPe). In addition, the aged animals showed decreased activity in the putamen in response to d-amphetamine administration. Although the responses in the SN and putamen of the aged monkeys differed from those in animal models of PD, the apomorphine-evoked activation of their GPe corresponded with apomorphine-induced increases in neuronal activity seen in Parkinson's patients and animal models. Given the major role of the GPe in regulating motor behavior, the altered responses in the aged GPe may contribute significantly to the motor slowing and movement dysfunctions characterizing advanced age.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center