Send to

Choose Destination
Cell Microbiol. 2001 Nov;3(11):763-72.

Epithelial cell contact-induced alterations in Salmonella enterica serovar Typhi lipopolysaccharide are critical for bacterial internalization.

Author information

The Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA.


The invasion of Pseudomonas aeruginosa and Salmonella enterica serovar Typhi into epithelial cells depends on the cystic fibrosis transmembrane conductance regulator (CFTR) protein as an epithelial receptor. In the case of P. aeruginosa, the bacterial ligand for CFTR is the outer core oligosaccharide portion of the lipopolysaccharide (LPS). To determine whether serovar Typhi LPS is also a bacterial ligand mediating internalization, we used both P. aeruginosa and serovar Typhi LPS as a competitive inhibitor of serovar Typhi invasion into the epithelial cell line T84. P. aeruginosa LPS containing a complete core efficiently inhibited serovar Typhi invasion. However, neither killed wild-type Typhi cells nor purified LPS were effective inhibitors. LPS from mutant Typhi strains defective in O side-chain synthesis, but with an apparently normal core, was capable of inhibiting invasion, but LPS obtained from a deeper rough mutant strain with alterations in fast-migrating core oligosaccharide failed to inhibit invasion. Lastly, exposure of wild-type serovar Typhi to T84 cultures before heat killing resulted in a structural alteration in its LPS that allowed the heat-killed cells to inhibit invasion of wild-type serovar Typhi. These data indicate that the serovar Typhi LPS core, like the P. aeruginosa LPS core, is a ligand mediating internalization of bacteria by epithelial cells, and that exposure of this ligand on wild-type Typhi is induced by the bacteria's interaction with host cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center