Send to

Choose Destination
Biochemistry. 2001 Nov 13;40(45):13728-33.

Copper binding before polypeptide folding speeds up formation of active (holo) Pseudomonas aeruginosa azurin.

Author information

Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.


Cofactors often stabilize the native state of the proteins; however, their effects on folding dynamics remain poorly understood. To uncover the role of one cofactor, we have examined the folding kinetics of Pseudomonas aeruginosa azurin, a small blue-copper protein with a copper cofactor uniquely coordinated to five protein residues. Copper removal produces apo-azurin which adopts a folded structure identical to that of the holo-form. The folding and unfolding kinetics for apo-azurin follow two-state behavior. The extrapolated folding time in water, tau approximately 7 ms, is in good agreement with the topology-based prediction. Copper uptake by folded apo-azurin, to govern active (holo) protein, is slow (tau approximately 14 min, 50:1 copper-to-protein ratio). In contrast, the formation of active (holo) azurin is much faster when copper is allowed to interact with the unfolded polypeptide. Refolding in the presence of 10:1, 50:1, and 100:1 copper:protein ratios yields identical time-trajectories: active azurin forms in two kinetic phases with folding times, extrapolated to water, of tau = 10 +/- 2 ms (major phase) and tau = 190 +/- 30 ms (minor phase), respectively. Correlating copper-binding studies, with a small peptide derived from the metal-binding region of azurin, support that initial cofactor binding is fast (tau approximately 3.7 ms) and thus not rate-limiting. Taken together, introducing copper prior to protein folding does not speed up the polypeptide-folding rate; nevertheless, it results in much faster (> 4000-fold) formation of active (i.e., holo) azurin. Living systems depend on efficient formation of functional biomolecules; attachment of cofactors prior to polypeptide folding appears to be one method to achieve this.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center