Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Jan 11;277(2):1340-8. Epub 2001 Nov 1.

Phosphorylation of inositol 1,4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca2+ signaling.

Author information

  • 1Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA.


Acetylcholine-evoked secretion from the parotid gland is substantially potentiated by cAMP-raising agonists. A potential locus for the action of cAMP is the intracellular signaling pathway resulting in elevated cytosolic calcium levels ([Ca(2+)](i)). This hypothesis was tested in mouse parotid acinar cells. Forskolin dramatically potentiated the carbachol-evoked increase in [Ca(2+)](i), converted oscillatory [Ca(2+)](i) changes into a sustained [Ca(2+)](i) increase, and caused subthreshold concentrations of carbachol to increase [Ca(2+)](i) measurably. This potentiation was found to be independent of Ca(2+) entry and inositol 1,4,5-trisphosphate (InsP(3)) production, suggesting that cAMP-mediated effects on Ca(2+) release was the major underlying mechanism. Consistent with this hypothesis, dibutyryl cAMP dramatically potentiated InsP(3)-evoked Ca(2+) release from streptolysin-O-permeabilized cells. Furthermore, type II InsP(3) receptors (InsP(3)R) were shown to be directly phosphorylated by a protein kinase A (PKA)-mediated mechanism after treatment with forskolin. In contrast, no evidence was obtained to support direct PKA-mediated activation of ryanodine receptors (RyRs). However, inhibition of RyRs in intact cells, demonstrated a role for RyRs in propagating Ca(2+) oscillations and amplifying potentiated Ca(2+) release from InsP(3)Rs. These data indicate that potentiation of Ca(2+) release is primarily the result of PKA-mediated phosphorylation of InsP(3)Rs, and may largely explain the synergistic relationship between cAMP-raising agonists and acetylcholine-evoked secretion in the parotid. In addition, this report supports the emerging consensus that phosphorylation at the level of the Ca(2+) release machinery is a broadly important mechanism by which cells can regulate Ca(2+)-mediated processes.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center