Format

Send to

Choose Destination
See comment in PubMed Commons below
Invest Ophthalmol Vis Sci. 2001 Nov;42(12):3023-30.

Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium.

Author information

  • 1University of Missouri School of Medicine, Mason Eye Institute, Columbia 65212, USA. katzm@health.missouri.edu

Abstract

PURPOSE:

In all mammalian species examined to date the retinal pigment epithelium (RPE) has been found to accumulate autofluorescent lysosomal storage bodies (lipofuscin) during senescence. Substantial evidence indicates that retinoids in the RPE-retina complex play a major role in RPE lipofuscin formation. Indeed, at least one RPE lipofuscin fluorophore is derived in part from vitamin A aldehyde. However, the precise mechanisms by which retinoids modulate RPE lipofuscin accumulation have not been elucidated. In mice without a functional Rpe65 gene, isomerization of all-trans- to 11-cis-retinol is blocked. Experiments were performed to determine whether this impairment of retinoid metabolism alters RPE lipofuscin accumulation.

METHODS:

RPE lipofuscin fluorophore content was compared in 12- to 13-month-old Rpe65(+/+), Rpe65(+/-), and Rpe65(-/-) mice. Lipofuscin fluorophore content was determined using quantitative fluorometric measurements. RPE lipofuscin content was also estimated with quantitative ultrastructural techniques.

RESULTS:

In the Rpe65(-/-) mice, RPE lipofuscin fluorophore accumulation was almost abolished. In addition, a significantly reduced accumulation of lipofuscin fluorophores was also observed in the Rpe65(+/-) animals. The inability of the RPE of)Rpe65(-/-) mice to supply 11-cis-retinal from the RPE to the retinal photoreceptors was accompanied by a massive accumulation of lipid droplets in the RPE that appeared to contain substantial amounts of retinoids.

CONCLUSIONS:

These findings indicate that formation of RPE lipofuscin fluorophores is almost completely dependent on a normal visual cycle. The absence of retinal (both all-trans and 11-cis) in Rpe65 knockout mice drastically reduced formation of lipofuscin fluorophores in these animals. Even an excessive accumulation of retinyl fatty acid esters in the RPE of Rpe65 knockout mice did not contribute to lipofuscin accumulation.

PMID:
11687551
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center