Send to

Choose Destination
See comment in PubMed Commons below
Calcif Tissue Int. 2001 Jul;69(1):13-9. Epub 2001 Jun 12.

Osteocyte lacunar occupancy in the femoral neck cortex: an association with cortical remodeling in hip fracture cases and controls.

Author information

Department of Medicine, University of Cambridge Clinical School, UK.


In adult humans, osteocytes die and disappear from their lacunae in the cortex of bones which remodel slowly, such as the proximal femur, and osteocyte death is particularly prevalent in the elderly. We have investigated the statistical determinants of osteocyte density in microscopic fields (0.71 mm2) within thin, complete femoral neck cross-sections cut from biopsies embedded in methyl methacrylate and stained with solochrome cyanine R. Lacunae were counted under phase contrast and osteocytes within lacunae were counted in the same fields under epifluorescence. The percentage of lacunae containing an osteocyte varied between 12.4% and 99.2%, according to subject and quadrantic region of the cortex examined. The microscopic determinants of field-specific osteocyte density included the porosity measured in the field itself and the regional measurement of the proportion of cortical canals bearing osteoid. There was significant variation between subjects and, within subjects, between cortical regions. Also the inferior region showed a significantly higher density of lacunae than the superior region (+8.2%; P = 0.013). However, cases of fracture were not significantly different from controls with respect to osteocyte lacunar occupancy after adjusting for osteoid-bearing canals and porosity. It is concluded that in subjects in their 7th-9th decades of age, osteocyte lacunar occupancy is statistically associated with bone turnover, implying that high turnover (locally young bone age) might favor lacunar occupancy (ln% osteoid; P = 0.021). Alternative explanations of the association are that porosity reflects a better nutritional supply via the vasculature or that porosity of the cortex is associated with osteocyte density through an effect of osteocytes on bone remodeling.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center