Format

Send to

Choose Destination
J Biol Chem. 2002 Jan 4;277(1):665-70. Epub 2001 Oct 29.

Transcriptional repression by binding of poly(ADP-ribose) polymerase to promoter sequences.

Author information

1
Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA.

Abstract

Poly(ADP-ribose) polymerase (PARP) is a DNA-binding enzyme that plays roles in response to DNA damage, apoptosis, and genetic stability. Recent evidence has implicated PARP in transcription of eukaryotic genes. However, the existing paradigm tying PARP function to the presence of DNA strand breaks does not provide a mechanism by which it may be recruited to gene-regulating domains in the absence of DNA damage. Here we report that PARP can bind to the DNA secondary structures (hairpins) in heteroduplex DNA in a DNA end-independent fashion and that automodification of PARP in the presence of NAD+ inhibited its hairpin binding activity. Atomic force microscopic images show that in vitro PARP protein has a preference for the promoter region of the PARP gene in superhelical DNA where the dyad symmetry elements likely form hairpins according to DNase probing. Using a chromatin cross-linking and immunoprecipitation assay we show that PARP protein binds to the chromosomal PARP promoter in vivo. Reporter gene assays have revealed that the transcriptional activity of the PARP promoter is 4-5-fold greater in PARP knockout cells than in wild type fibroblasts. Reintroduction of vectors expressing full-length PARP protein or its truncated mutant (DNA-binding domain retained but lacking catalytic activity) into PARP(-/-) cells has conferred transcriptional down-regulation of the PARP gene promoter. These data provide support for PARP protein as a potent regulator of transcription including down-regulation of its own promoter.

PMID:
11684688
DOI:
10.1074/jbc.M108551200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center