Send to

Choose Destination
Neuropharmacology. 2001 Dec;41(7):895-906.

Prolonged exposure to YC-1 induces apoptosis in adrenomedullary endothelial and chromaffin cells through a cGMP-independent mechanism.

Author information

Departamento de BioquĂ­mica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain.


YC-1, a benzyl indazole derivative, is an NO-independent direct activator of soluble guanylyl cyclase (sGC), which presents a synergistic action with NO in stimulating cGMP synthesis. These properties have served to suggest YC-1 as an attractive therapeutic agent by permitting the reduction of nitrovasodilator dosage and regulating endogenous cGMP metabolism. Here we studied the effect of prolonged exposure of adrenomedullary endothelial and chromaffin cells to YC-1. We found that YC-1 increased cGMP in the two types of cells and this action was blocked by the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Cells underwent apoptotic death in association with increased caspase-3-like activity, DNA fragmentation, cytoskeletal disorganization and changes in membrane permeability after prolonged incubation with YC-1. Caspase-3-like protease activity and DNA fragments in the cytoplasm were increased in a dose-dependent manner by 16 h YC-1 treatment. The specific and cell permeable caspase-3-like protease inhibitor DEVD-CHO effectively inhibited YC-1-mediated caspase-3-like activation and DNA fragmentation. Moreover, YC-1 also induced cell shape changes accompanied by actin filament disorganization and alterations in membrane permeability. Cells incubated for 24h with YC-1 showed damaged membranes by binding to nucleic acid of a dye excluded by the intact plasma membrane of live cells. YC-1 also induced a decrease in the intracellular non-specific esterase activity, another indication of cell toxicity. Apoptotic phenomena were not prevented by the presence of ODQ although it effectively inhibited the YC-1-elicited cGMP increases. These findings indicate that YC-1 induces apoptosis by activating caspase-3-like protease through a mechanism independent of sGC activation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center