Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2001 Oct 15;73(20):4988-93.

Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers.

Author information

Department of Chemistry and McKnight Brain Institute, The University of Florida, Gainesville 32611-7200, USA.


A new molecular conjugation method has been developed to label biomolecules with optically stable metalorganic luminophores, such as tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy), which are otherwise not possible for direct linking with the biomolecules. Unique biochemical properties of the biomolecule can, thus, be associated with photostable luminophores. This opens a general way to conjugate desired biomolecules using a sensitive signal transduction method. It also promotes the application of excellent luminescent materials, especially those based on photostable metalorganic luminophores, in biochemical analysis and biomolecular interaction studies. The conjugation method is based on uniform luminophore-doped silica (LDS) nanoparticles (63 +/- 4 nm). These nanoparticles have been prepared using a water-in-oil (W/O) microemulsion method. The controlled hydrolysis of tetraethyl orthosilicate (TEOS) in W/O microemulsion leads to the formation of monodisperse LDS nanoparticles. The luminophores are doped inside the nanoparticles, and the particle's silica surfaces can be used to covalently bind with biomolecules. The luminophores are well-protected from the environmental oxygen when they are doped inside the silica network. As an example, we used an antibody for leukemia cell recognition. The antibody was first immobilized onto the luminophore-doped nanoparticle through silica chemistry and then was used for leukemia cell identification by an optical microscopy imaging technique. The leukemia cells were identified easily, clearly, and with high efficiency using these antibody-coated nanoparticles. The advantages of using small, uniform luminophore-doped nanoparticles are discussed.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center