Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Evol. 2001 Oct-Nov;53(4-5):477-84.

Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny.

Author information

1
Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan. katoh@biophys.kyoto-u.ac.jp

Abstract

A heuristic approach to search for the maximum-likelihood (ML) phylogenetic tree based on a genetic algorithm (GA) has been developed. It outputs the best tree as well as multiple alternative trees that are not significantly worse than the best one on the basis of the likelihood criterion. These near-optimum trees are subjected to further statistical tests. This approach enables ones to infer phylogenetic trees of over 20 taxa taking account of the rate heterogeneity among sites on practical time scales on a PC cluster. Computer simulations were conducted to compare the efficiency of the present approach with that of several likelihood-based methods and distance-based methods, using amino acid sequence data of relatively large (5-24) taxa. The superiority of the ML method over distance-based methods increases as the condition of simulations becomes more realistic (an incorrect model is assumed or many taxa are involved). This approach was applied to the inference of the universal tree based on the concatenated amino acid sequences of vertically descendent genes that are shared among all genomes whose complete sequences have been reported. The inferred tree strongly supports that Archaea is paraphyletic and Eukarya is specifically related to Crenarchaeota. Apart from the paraphyly of Archaea and some minor disagreements, the universal tree based on these genes is largely consistent with the universal tree based on SSU rRNA.

PMID:
11675608
DOI:
10.1007/s002390010238
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center