Send to

Choose Destination
Eur J Pharmacol. 2001 Aug 3;425(1):1-9.

Multiple pathways of sigma(1) receptor ligand uptakes into primary cultured neuronal cells.

Author information

Department of Psychopharmacology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya, Tokyo 156-8585, Japan.


Although many antipsychotics have affinities for sigma receptors, the transportation pathway of exogenous sigma(1) receptor ligands to intracellular type-1 sigma receptors are not fully understood. In this study, sigma(1) receptor ligand uptakes were studied using primary cultured neuronal cells. [(3)H](+)-pentazocine and [(3)H](R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), used as a selective sigma(1) receptor ligands, were taken up in a time-, energy- and temperature-dependent manner, suggesting that active transport mechanisms were involved in their uptakes. sigma(1) receptor ligands taken up into primary cultured neuronal cells were not restricted to agonists, but also concerned antagonists. The uptakes of these ligands were mainly Na(+)-independent. Kinetic analysis of [(3)H](+)-pentazocine and [(3)H]MS-377 uptake showed K(m) values (microM) of 0.27 and 0.32, and V(max) values (pmol/mg protein/min) of 17.4 and 9.4, respectively. Although both ligands were incorporated, the pharmacological properties of these two ligands were different. Uptake of [(3)H](+)-pentazocine was inhibited in the range 0.4-7.1 microM by all the sigma(1) receptor ligands used, including N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100), a selective sigma(1) receptor ligand. In contrast, the inhibition of [(3)H]MS-377 uptake was potently inhibited by haloperidol, characterized by supersensitivity (IC(50), approximately 2 nM) and was inhibited by NE-100 with low sensitivity (IC(50), 4.5 microM). Moreover, kinetic analysis revealed that NE-100 inhibited [(3)H]MS-377 uptake in a noncompetitive manner, suggesting that NE-100 acted at a site different from the uptake sites of [(3)H]MS-377. These findings suggest that there are at least two uptake pathways for sigma(1) receptor ligands in primary cultured neuronal cells (i.e. a haloperidol-sensitive pathway and another, unclear, pathway). In addition, pretreatment of cells with a calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), a myosin light chain kinase inhibitor, 1-(5-chloronaphthalene-1-sulfonyl)homopiperazine (ML-9), or microsomal Ca(2+)-ATPase inhibitors resulted in a reduction of the amount of sigma receptor ligand uptake. These findings suggest that the Ca(2+) pump on the endoplasmic reticulum and/or calmodulin-related events might be involved in the regulation of the uptake of sigma receptor ligands into primary neuronal cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center