Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharmacol. 2001 Nov;60(5):989-98.

Activation of inositol 1,4,5-trisphosphate receptor is essential for the opening of mouse TRP5 channels.

Author information

  • 1Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.


We studied the opening mechanism of Ca(2+)-permeable channels formed with mouse transient receptor potential type 5 (mTRP5) using Xenopus oocytes. After stimulation of coexpressed muscarinic M(1) receptors with acetylcholine (ACh) in a Ca(2+)-free solution, switching to 2 mM Ca(2+)-containing solution evoked a large Cl(-) current, which reflects the opening of endogenous Ca(2+)-dependent Cl(-) channels following Ca(2+) entry through the expressed channels. The ACh-evoked response was not affected by a depletion of Ca(2+) store with thapsigargin but was inhibited by preinjection of antisense oligodeoxynucleotides (ODNs) to G(q), G(11), or both. The mTRP5 channel response was also induced by a direct activation of G proteins with injection of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S). The ACh- and GTP gamma S-evoked responses were inhibited by either pretreatment with a phospholipase C inhibitor, U73122, or an inositol-1,4,5-trisphosphate (IP(3)) receptor inhibitor, xestospongin C (XeC). An activation of IP(3) receptors with injection of adenophostin A (AdA) evoked the mTRP5 channel response in a dose-dependent manner. The AdA-evoked response was not suppressed by preinjection of antisense ODNs to G(q/11) or U73122 but was suppressed by either preinjection of XeC or a peptide mimicking the IP(3) binding domain of Xenopus IP(3) receptor. These findings suggest that the activation of IP(3) receptor is essential for the opening of mTRP5 channels, and that neither G proteins, phosphoinositide metabolism, nor depletion of the Ca(2+) store directly modifies the IP(3) receptor-linked opening of mTRP5 channels.

[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center