Send to

Choose Destination
J Neurosci Methods. 2001 Nov 15;112(1):29-42.

Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters.

Author information

National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.


Reagents capable of rapid and efficient release of neuroactive amino acids (L-glutamate, GABA and glycine) upon flash photolysis of thermally stable, inert precursors have been elusive. 7-Nitroindolinyl (NI)-caged and 4-methoxy-7-nitroindolinyl (MNI)-caged compounds that fulfil these criteria are evaluated here. These caged precursors are highly resistant to hydrolysis. Photolysis is fast (half time< or =0.26 ms) and the conversion achieved with a xenon flashlamp is about 15% for the NI-caged L-glutamate and about 35% for the MNI-caged L-glutamate. A procedure is described for calibration of photolysis in a microscope-based experimental apparatus. NI-caged L-glutamate itself showed no agonist or antagonist effects on AMPA and NMDA receptors in cultured neurones, and had no effect on climbing fibre activation of Purkinje neurones. A control compound with identical photochemistry that generated an inert phosphate upon photolysis was used to confirm that the intermediates and by-products of photolysis have no deleterious effects. MNI-caged L-glutamate is as stable and fast as NI-caged L-glutamate and similarly inert at glutamate receptors, but about 2.5 times more efficient. However, NI-caged GABA is an antagonist at GABA(A) receptors and NI-glycine an antagonist at glycine receptors. The results show the utility and limitations of these fast and stable caged neurotransmitters in the investigation of synaptic processes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center