Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1990 Nov;87(21):8526-30.

Stable transformation of plastids in higher plants.

Author information

Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08855-0759, USA.


Stable genetic transformation of the plastid genome is reported in a higher plant, Nicotiana tabacum. Plastid transformation was obtained after bombardment of leaves with tungsten particles coated with pZS148 plasmid DNA. Plasmid pZS148 (9.6 kilobases) contains a 3.7-kilobase plastid DNA fragment encoding the 16S rRNA. In the 16S rRNA-encoding DNA (rDNA) a spectinomycin resistance mutation is flanked on the 5' side by a streptomycin resistance mutation and on the 3' side by a Pst I site generated by ligating an oligonucleotide in the intergenic region. Transgenic lines were selected by spectinomycin resistance and distinguished from spontaneous mutants by the flanking, cotransformed streptomycin resistance and Pst I markers. Regenerated plants are homoplasmic for the spectinomycin resistance and the Pst I markers and heteroplasmic for the unselected streptomycin resistance trait. Transgenic plastid traits are transmitted to the seed progeny. The transgenic plastid genomes are products of a multistep process, involving DNA recombination, copy correction, and sorting out of plastid DNA copies.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center