Send to

Choose Destination
See comment in PubMed Commons below
Toxicol Appl Pharmacol. 2001 Oct 15;176(2):110-7.

Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (-)-epigallocatechin-3-gallate.

Author information

  • 1Department of Dermatology, Case Western Reserve University, Cleveland, Ohio 44106, USA.


Exposure of normal human epidermal keratinocytes (NHEK) to UVB radiation induces intracellular release of hydrogen peroxide (oxidative stress) and phosphorylation of mitogen-activated protein kinase cell signaling pathways. Here, we demonstrate that pretreatment of NHEK with (-)-epigallocatechin-3-gallate (EGCG), an antioxidant from green tea, inhibits UVB-induced hydrogen peroxide (H(2)O(2)) production and H(2)O(2)-mediated phosphorylation of MAPK signaling pathways. We found that treatment of EGCG (20 microg/ml of media) to NHEK before UVB (30 mJ/cm(2)) exposure inhibited UVB-induced H(2)O(2) production (66-80%) concomitant with the inhibition of UVB-induced phosphorylation of ERK1/2 (57-80%), JNK (53-83%), and p38 (50-77%) proteins. To demonstrate whether UVB-induced phosphorylation of MAPK occurs via UVB-induced H(2)O(2) (oxidative stress) production, NHEK were treated with the oxidant H(2)O(2). Treatment of H(2)O(2) to NHEK resulted in phosphorylation of ERK1/2, JNK, and p38. Using the same in vitro system, when these cells were pretreated with EGCG or with the known antioxidant ascorbic acid (as positive control), H(2)O(2)-induced phosphorylation of ERK1/2, JNK, and p38 was found to be significantly inhibited. These findings demonstrate that EGCG has the potential to inhibit UVB-induced oxidative stress-mediated phosphorylation of MAPK signaling pathways, suggesting that EGCG could be useful in attenuation of oxidative stress-mediated and MAPK-caused skin disorders in humans.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center