Format

Send to

Choose Destination
J Neurobiol. 2001 Nov 5;49(2):118-28.

Optical detection of neuromodulatory effects of conditioned taste aversion in the pond snail Lymnaea stagnalis.

Author information

1
Laboratory of Animal Behavior and Intelligence, Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan.

Abstract

Multiple site optical recording was used to analyze the neural activity changes caused by conditioned taste aversion (CTA) training in the pond snail Lymnaea stagnalis. In response to electrical stimulation of the median lip nerve, which transmits chemosensory signals of appetitive taste to the central nervous system, we optically detected large numbers of spikes in several parts of the buccal ganglion. The effects of CTA training on the spike responses were examined in two areas of the ganglion where the most active neural responses occurred. In one area (termed Area I) that included the N1 medial (N1M) cells, a class of central pattern generator interneurons involved in feeding behavior, the number of spikes in a period 1500-2000 ms after median lip nerve stimulation was significantly reduced in conditioned animals compared to control animals. In another area (termed Area II) positioned between buccal motoneurons, the B3 and B4CL (cluster) cells, the evoked spike responses were unaffected by CTA training. These results, taken together with our previous results indicating an enhancement of an inhibitory input to the N1M cells during CTA, suggest that an appetitive taste signal transmitted to the N1M cells through the median lip nerves is suppressed during CTA, resulting in a decrease of the feeding response.

PMID:
11598919
DOI:
10.1002/neu.1069
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center