Send to

Choose Destination
Am J Pathol. 2001 Oct;159(4):1567-79.

Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor.

Author information

Division of Carcinogenesis and Differentiation, German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany.


Tumor microenvironment is crucial for cancer growth and progression as evidenced by reports on the significance of tumor angiogenesis and stromal cells. Using the HaCaT/HaCaT-ras human skin carcinogenesis model, we studied tumor progression from benign tumors to highly malignant squamous cell carcinomas. Progression of tumorigenic HaCaT-ras clones to more aggressive and eventually metastatic phenotypes was reproducibly achieved by their in vivo growth as subcutaneous tumors in nude mice. Their enhanced malignant phenotype was stably maintained in recultured tumor cells that represented, identified by chromosomal analysis, a distinct subpopulation of the parental line. Additional mutagenic effects were apparent in genetic alterations involving chromosomes 11 and 2, and in amplification and overexpression of the H-ras oncogene. Importantly, in vitro clonal selection of benign and malignant cell lines never resulted in late-stage malignant clones, indicating the importance of the in vivo environment in promoting an enhanced malignant phenotype. Independently of their H-ras status, all in vivo-progressed tumor cell lines (five of five) exhibited a constitutive and stable expression of the hematopoietic growth factors granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor, which may function as autocrine/paracrine mediators of tumor progression in vivo. Thus, malignant progression favored by the in vivo microenvironment requires both clonal selection of subpopulations adapted to in vivo growth and mutational events leading to stable functional alterations.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center