Send to

Choose Destination
Am J Kidney Dis. 2001 Oct;38(4):761-9.

Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis.

Author information

Department of Nephrology, Tokai University School of Medicine, Isehara, Japan.


There is much debate over the origins of fibroblast-type cells that accumulate in interstitial fibrosis. A controversial hypothesis, supported by data from animal and cell-culture studies, is that fibroblast-type cells can derive from tubular epithelial cells by a process of epithelial-mesenchymal transdifferentiation. However, to date, no evidence supports this postulate in human glomerulonephritis. This study sought to provide evidence that tubular epithelial cells can undergo phenotypic change toward a fibroblast-like cell in human glomerulonephritis. One hundred twenty-seven open renal biopsy specimens from patients with minimal change disease (MCD), immunoglobulin A (IgA) nephropathy, and rapidly progressive glomerulonephritis (RPGN) were examined for tubular phenotypic change by two-color immunohistochemistry using the criteria of de novo expression of alpha-smooth muscle actin (alpha-SMA), a myofibroblast marker; loss of the epithelial marker cytokeratin; and collagen production. In normal human kidney and MCD, tubular epithelial cells expressed cytokeratin with no evidence of alpha-SMA staining. However, in 36 of 90 cases of IgA nephropathy and 9 of 18 cases of RPGN, small numbers of tubular epithelial cells in areas of fibrosis showed de novo alpha-SMA expression, accounting for 0.4% +/- 0.2% (IgA nephropathy) and 3.8% +/- 1.5% (RPGN) of cortical tubules. An intermediate stage of phenotypic change was observed in some cuboidal epithelial cells that expressed both cytokeratin and alpha-SMA. Tubules containing alpha-SMA-positive (alpha-SMA(+)) cells also stained for collagen types I and III, suggesting that tubular cells undergoing phenotypic change have an active role in the fibrotic process. There also was a marked increase in transforming growth factor-beta1 (TGF-beta1) tubular expression in areas with interstitial fibrosis, including tubules with phenotypic change. There was a highly significant correlation between tubular alpha-SMA expression and interstitial fibrosis, interstitial alpha-SMA(+) myofibroblast accumulation, deposition of collagen types I and III, tubular TGF-beta1 expression, and renal dysfunction. In conclusion, this study provides evidence that tubular epithelial cells can undergo phenotypic change toward a myofibroblast-like phenotype on the basis of de novo alpha-SMA expression, loss of cytokeratin, and de novo collagen staining. These data, although not conclusive, provide the first support for the hypothesis that transdifferentiation of tubular epithelial cells has a role in progressive renal fibrosis in human glomerulonephritis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center