Send to

Choose Destination
See comment in PubMed Commons below
Methods. 2001 Sep;25(1):19-30.

Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer.

Author information

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.


RNA performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. The reason probably is twofold: (a) Life started as a prebiotic RNA World, in which RNA served as the genetic information carrier and catalyzed all chemical reactions required for its proliferation and (b) some of the RNA World functions were conserved throughout evolution because neither DNA nor protein is as adept in fulfilling them. A particular advantage of RNA is its high propensity to form alternative structures as required in subsequent steps of a reaction pathway. Here I describe fluorescence resonance energy transfer (FRET) as a method to monitor a crucial conformational transition on the reaction pathway of the hairpin ribozyme, a small catalytic RNA motif from a self-replicating plant virus satellite RNA and well-studied paradigm of RNA folding. Steady-state FRET measurements in solution allow one to measure the kinetics and requirements of docking of its two independently folding domains; time-resolved FRET reveals the relative thermodynamic stability of the undocked (extended, inactive) and docked (active) ribozyme conformations; while single-molecule FRET experiments will highlight the dynamics of RNA at the individual molecule level. Similar domain docking events are expected to be at the heart of many biological functions of RNA, and the described FRET techniques promise to be adaptable to most of the involved RNA systems.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center