Send to

Choose Destination
Am J Physiol. 1975 Jun;228(6):1628-33.

Effect of glucagon on plasma alanine and glutamine metabolism and hepatic gluconeogenesis in sheep.


Net hepatic uptakes of plasma alanine (Ala), glutamate (Glu), and glutamine (Gln) were measured before and during intraportal glucagon infusions in five normaland four insulin-and alloxan-treated (ITA), conscious, fed sheep. Since hyperinsulinemia is associated with glucagon administration, ITA sheep were used so that constant plasma insulin levels could be maintained. Glucose turnover was determined by a vena caval infusion of glucose-6-'3H. In addition, in ITA sheep, Ala-'14C wasinfused for measurement of plasma Ala turnover, its unidirectional organ metabolism, and contribution to glucose synthesis. During infusion of glucagon, the net hepatic uptake of Ala increased significantly (P is less than 0.01) from control values of 3.8 plus or minus 0.5 and 2.7 plus or minus 0.6 mmol/h to 5.9 plus or minus 1.0 and 5.5 plus or minus 0.8 mmol/h in normal and ITA sheep, respectively. Similarly, Gin uptake increased from 4.3 plus or minus 1.4 and 1.6 plus or minus 0.5 to 5.5 plus or minus1.6 and 3.7 plus or minus 1.0 mmol/h, respectively. The conversion of Ala to glucose increased from control values of 1.7 plus or minus 0.5 to 3.0 plus or minus 0.5 mmol/h. Arterial plasma Ala and Gin concentrations decreased about 25% during glucagon administration, presumably as a result of their increased hepatic uptakes. A decreasein utilization of plasma Ala, but no change in production was calculated for the nonhepatic tissues, indicating that glucagon increased gluconeogenesis from Ala at the expense of muscle protein synthesis. Glucagon thus has a direct effect on the liver butonly an indirect effect on other tissues.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center