Format

Send to

Choose Destination
See comment in PubMed Commons below

Molecular mechanism of PCNA-dependent base excision repair.

Author information

1
Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.

Abstract

In higher eukaryotes, base excision repair can proceed by two alternative pathways: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Recently, we have reconstituted the PCNA-dependent AP site repair reaction with six purified human proteins: AP endonuclease, replication factor C (RFC), PCNA, flap endonuclease 1 (FEN1), DNA polymerase delta (pol delta), and DNA ligase I. In this reconstituted system, the number of nucleotides replaced during the repair reaction (patch size) was predominantly two nucleotides. PCNA can directly interact with RFC, pol delta, FEN1 and DNA ligase I. These interactions are partly through a consensus motif, QXX(I/L/M)XX(F/H)(F/Y), found in each of the four proteins. PCNA functions as a molecular adaptor for recruiting these factors to the site of DNA repair. Two DNA-N-glycosylases among those so far cloned from human, UNG2 and MYH, are found to have the same PCNA-binding motif. Major substrates of these enzymes, a uracil opposite an adenine for UNG2 and an adenine opposite an 8-oxoguanine for MYH, are formed during DNA replication. Therefore, UNG2 and MYH may serve for replication-coupled base excision repair through the direct interaction with PCNA in the replication machinery.

PMID:
11554292
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center