Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2001 Oct;281(4):E837-47.

Analysis of recombinant Phex: an endopeptidase in search of a substrate.

Author information

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.


X-linked hypophosphatemia (XLH) is caused by inactivating mutations of Phex, a phosphate-regulating endopeptidase. Further advances in our knowledge of the pathogenesis of XLH require identification of the biological function of Phex and its physiologically relevant substrates. We evaluated several potential substrates using mouse recombinant wild-type Phex proteins (rPhex-WT) and inactive mutant Phex proteins (rPhex-3'M) lacking the COOH-terminal catalytic domain as controls. By Western blot analysis, we demonstrated that Phex is a membrane-bound 100-kDa glycosylated monomer. Neither casein, a substrate for the related endopeptidase thermolysin, human stanniocalcin 1 (hSTC-1), an osteoblast-derived phosphate-regulating factor, nor FGF-23 peptide (amino acid 172-186), comprising the region mutated in autosomal dominant hypophosphatemia, was cleaved by rPhex-WT. In addition, membranes expressing rPhex-WT, rPhex-3'M, and the empty vector hydrolyzed parathyroid hormone-(1-34), indicating the lack of Phex-specific cleavage of parathyroid hormone. In contrast, rPhex-WT did display an EDTA-dependent cleavage of the neutral endopeptidase substrate [Leu]enkephalin. Further studies with wild-type and mutant rPhex proteins should permit the identification of physiologically relevant substrates involved in the pathogenesis of XLH.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center