Send to

Choose Destination
Cereb Cortex. 2001 Oct;11(10):946-53.

Spectral and temporal processing in human auditory cortex.

Author information

Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC H3A 2B4, Canada.


We used positron emission tomography to examine the response of human auditory cortex to spectral and temporal variation. Volunteers listened to sequences derived from a standard stimulus, consisting of two pure tones separated by one octave alternating with a random duty cycle. In one series of five scans, spectral information (tone spacing) remained constant while speed of alternation was doubled at each level. In another five scans, speed was kept constant while the number of tones sampled within the octave was doubled at each level, resulting in increasingly fine frequency differences. Results indicated that (i) the core auditory cortex in both hemispheres responded to temporal variation, while the anterior superior temporal areas bilaterally responded to the spectral variation; and (ii) responses to the temporal features were weighted towards the left, while responses to the spectral features were weighted towards the right. These findings confirm the specialization of the left-hemisphere auditory cortex for rapid temporal processing, and indicate that core areas are especially involved in these processes. The results also indicate a complementary hemispheric specialization in right-hemisphere belt cortical areas for spectral processing. The data provide a unifying framework to explain hemispheric asymmetries in processing speech and tonal patterns. We propose that differences exist in the temporal and spectral resolution of corresponding fields in the two hemispheres, and that they may be related to anatomical hemispheric asymmetries in myelination and spacing of cortical columns.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center