Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2001 Aug;8(2):439-48.

Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk.

Author information

1
Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.

Abstract

Selective degradation of single subunits of multimeric complexes by the ubiquitin pathway underlies multiple regulatory switches, including those involving cyclins and Cdk inhibitors. The machinery that segregates ubiquitinated proteins from unmodified partners prior to degradation remains undefined. We report that ubiquitinated Sic1 (Ub-Sic1) embedded within inactive S phase cyclin-Cdk (S-Cdk) complexes was rapidly degraded by purified 26S proteasomes, yielding active S-Cdk. Mutant proteasomes that failed to degrade Ub-Sic1 activated S-Cdk only partially in an ATP-dependent manner. Whereas Ub-Sic1 was degraded within approximately 2 min, spontaneous dissociation of Ub-Sic1 from S-Cdk was approximately 200-fold slower. We propose that the 26S proteasome has the intrinsic capability to extract, unfold, and degrade ubiquitinated proteins while releasing bound partners untouched. Activation of S-Cdk reported herein represents a complete reconstitution of the regulatory switch underlying the G1/S transition in budding yeast.

PMID:
11545745
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center