Send to

Choose Destination
Cell Death Differ. 2001 Jun;8(6):588-94.

Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases.

Author information

Health and Environment Unit, Laval University Medical Research Center, CHUQ, and Faculty of Medicine, Laval University, Qu├ębec, Canada.


The poly(ADP-ribose) polymerase (PARP-1), a 113 kDa nuclear enzyme, is cleaved in fragments of 89 and 24 kDa during apoptosis. This cleavage has become a useful hallmark of apoptosis and has been shown to be done by DEVD-ase caspases, a family of proteases activated during apoptosis. Interestingly, PARP-1 is also processed during necrosis but a major fragment of 50 kDa is observed. This event is not inhibited by zVAD-fmk, a broad spectrum caspase inhibitor, suggesting that these proteases are not implicated in the necrotic cleavage of PARP-1. Since lysosomes release their content into the cytosol during necrosis, the proteases liberated could produce the cleavage of PARP-1. We therefore isolated lysosomal rich-fractions from Jurkat T cells. Our results reveal that the in vitro lysosomal proteolytic cleavage of affinity purified bovine PARP-1 is composed of fragments corresponding, in apparent molecular weight and function, to those found in Jurkat T cells treated with necrotic inducers like 0.1% H2O2, 10% EtOH or 100 microM HgCl2. Moreover, we used purified lysosomal proteases (cathepsins B, D and G) in an in vitro cleavage assay and found that cathepsins B and G cleaved PARP-1 in fragments also found with the lysosomal rich-fractions. These findings suggest that the necrotic cleavage of PARP-1 is caused in part or in totality by lysosomal proteases released during necrosis.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center