Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 2001 Sep;86(3):1179-94.

NMDA antagonists in the superior colliculus prevent developmental plasticity but not visual transmission or map compression.

Author information

1
Graduate Program in Neurobiology and Behavior, Department of Biology, Georgia State University, 24 Peachtree Center Ave., Atlanta, GA 30303, USA.

Abstract

Partial ablation of the superior colliculus (SC) at birth in hamsters compresses the retinocollicular map, increasing the amount of visual field represented at each SC location. Receptive field sizes of single SC neurons are maintained, however, preserving receptive field properties in the prelesion condition. The mechanism that allows single SC neurons to restrict the number of convergent retinal inputs and thus compensate for induced brain damage is unknown. In this study, we examined the role of N-methyl-D-aspartate (NMDA) receptors in controlling retinocollicular convergence. We found that chronic 2-amino-5-phosphonovaleric acid (APV) blockade of NMDA receptors from birth in normal hamsters resulted in enlarged single-unit receptive fields in SC neurons from normal maps and further enlargement in lesioned animals with compressed maps. The effect was linearly related to lesion size. These results suggest that NMDA receptors are necessary to control afferent/target convergence in the normal SC and to compensate for excess retinal afferents in lesioned animals. Despite the alteration in receptive field size in the APV-treated animals, a complete visual map was present in both normal and lesioned hamsters. Visual responsiveness in the treated SC was normal; thus the loss of compensatory plasticity was not due to reduced visual responsiveness. Our results argue that NMDA receptors are essential for map refinement, construction of receptive fields, and compensation for damage but not overall map compression. The results are consistent with a role for the NMDA receptor as a coincidence detector with a threshold, providing visual neurons with the ability to calculate the amount of visual space represented by competing retinal inputs through the absolute amount of coincidence in their firing patterns. This mechanism of population matching is likely to be of general importance during nervous system development.

PMID:
11535668
PMCID:
PMC4963030
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center