Send to

Choose Destination
Nature. 2001 Aug 30;412(6850):917-21.

Rotational movement during cyclic nucleotide-gated channel opening.

Author information

Howard Hughes Medical Institute & Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA.


Cyclic nucleotide-gated (CNG) channels are crucial components of visual, olfactory and gustatory signalling pathways. They open in response to direct binding of intracellular cyclic nucleotides and thus contribute to cellular control of both the membrane potential and intracellular Ca2+ levels. Cytosolic Ni2+ potentiates the rod channel (CNG1) response to cyclic nucleotides and inhibits the olfactory channel (CNG2) response. Modulation is due to coordination of Ni2+ by channel-specific histidines in the C-linker, between the S6 transmembrane segment and the cyclic nucleotide-binding domain. Here we report, using a histidine scan of the initial C-linker of the CNG1 channel, stripes of sites producing Ni2+ potentiation or Ni2+ inhibition, separated by 50 degrees on an alpha-helix. These results suggest a model for channel gating where rotation of the post-S6 region around the channel's central axis realigns the Ni2+-coordinating residues of multiple subunits. This rotation probably initiates movement of the S6 and pore opening.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center