Send to

Choose Destination
J Neurotrauma. 2001 Aug;18(8):799-812.

Upregulation of iNOS expression and phosphorylation of eIF-2alpha are paralleled by suppression of protein synthesis in rat hypothalamus in a closed head trauma model.

Author information

Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.


When the inducible form of nitric oxide synthase (iNOS) is expressed after challenge to the nervous system, it results in abnormally high concentrations of nitric oxide (NO). Under such conditions, NO could phosphorylate the eukaryotic translation initiation factor (eIF)-2alpha, thus suppressing protein synthesis in neurons that play a role in endocrine and autonomic functions. Using the Marmarou model of traumatic brain injury (TBI), we observed a rapid increase (at 4 h after TBI) of iNOS mRNA in magno- and parvocellular supraoptic and paraventricular neurons, declining gradually by approximately 30% at 24 h and by approximately 80% at 48 h. Western analysis indicated a trend towards increased iNOS protein synthesis at 4 h, which peaked at 8 h, and tended to decrease at the later time points. At the same time points, we detected immunocytochemically the phosphorylated form of eIF-2alpha (eIF-2alpha[P]) as cytoplasmic and more often as nuclear labeling. The incidence of double-labeled [iNOS and eIF-2alpha(P)] neuronal profiles, particularly at 24 h and 48 h after TBI, was high. De novo protein synthesis assessed quantitatively after infusion of 35S methionine/cysteine was reduced by approximately 20% at 4 h, remained depressed at 24 h, and did not return to control levels up to 48 h following the trauma. The results suggest that iNOS may trigger phosphorylation of eIF-2alpha, which in turn interferes with protein synthesis at the translational (ribosomal complex) and transcriptional (chromatin) levels. The depression in protein synthesis may include downregulation of iNOS itself, which could be an autoregulatory inhibitory feedback mechanism for NO synthesis. Excessive amounts of NO may also participate in dysfunction of hypothalamic circuits that underlie endocrine and autonomic alterations following TBI.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center