Send to

Choose Destination
See comment in PubMed Commons below
Exp Gerontol. 2001 Sep;36(9):1527-37.

The role of AGEs in aging: causation or correlation.

Author information

Department of Chemistry and Biochemistry, Graduate Science Research Center, Room 320, University of South Carolina, Columbia, SC 29208, USA.


Over a dozen advanced glycation end-products (AGEs) have been identified in tissue proteins by chemical or immunological methods. Of these, about half are known to accumulate with age in collagen at a rate that correlates with the half-life of the collagen. AGEs may be formed by oxidative and non-oxidative reactions and are in some cases identical to advanced lipoxidation end-products (ALEs) formed in protein during lipid peroxidation reactions. AGEs affect the biochemical and physical properties of proteins and the extracellular matrix (ECM), including the charge, hydrophobicity, turnover and elasticity of collagen, and the cell adhesion, permeability and pro-inflammatory properties of the ECM. A number of scavenger and AGE-specific receptors have been identified that may mediate the turnover of AGE-proteins, catalyze the local production of reactive oxygen species and attract and activate tissue macrophages. Although AGEs in proteins are probably correlative, rather than causative, with respect to aging, they accumulate to high levels in tissues in age-related chronic diseases, such as atherosclerosis, diabetes, arthritis and neurodegenerative disease. Inhibition of AGE formation in these diseases may limit oxidative and inflammatory damage in tissues, retarding the progression of pathophysiology and improve the quality of life during aging.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center