Send to

Choose Destination
Planta. 2001 May;213(1):64-70.

Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta).

Author information

Departamento de Ecología, Facultad de Ciencias, Universidad de Málaga, Spain.


The effects of increased CO2 levels (10,000 microl l(-1)) in cultures of the green nitrophilic macroalga Ulva rigida C. Agardh were tested under conditions of N saturation and N limitation, using nitrate as the only N source. Enrichment with CO2 enhanced growth, while net photosynthesis, gross photosynthesis, dark respiration rates and soluble protein content decreased. The internal C pool remained constant at high CO2, while the assimilated C that was released to the external medium was less than half the values obtained under ambient CO2 levels. This higher retention of C provided the source for extra biomass production under N saturation. In N-sufficient thalli, nitrate-uptake rate and the activity of nitrate reductase (EC increased under high CO2 levels. This did not affect the N content or the internal C:N balance, implying that the extra N-assimilation capacity led to the production of new biomass in proportion to C. Growth enhancement by increased level of CO2 was entirely dependent on the enhancement effect of CO2 on N-assimilation rates. The increase in nitrate reductase activity at high CO2 was not related to soluble carbohydrates or internal C. This indicates that the regulation of N assimilation by CO2 in U. rigida might involve a different pathway from that proposed for higher plants. The role of organic C release as an effective regulatory mechanism maintaining the internal C:N balance in response to different CO2 levels is discussed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center