Format

Send to

Choose Destination
Biochimie. 2001 Jul;83(7):575-81.

Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics.

Author information

1
Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.

Abstract

The molecular complexity that defines different cell types and their biological responses occurs at the level of the cell's proteome. The recent increase in availability of genomic sequence information is a valuable tool for the field of proteomics. While most proteomic studies focus on differential expression levels, post-translational modifications such as phosphorylation, glycosylation, and acetylation, provide additional levels of functional complexity to the cell's proteome. The reversible post-translational modification O-linked beta-N-acetylglucosamine (O-GlcNAc) is found on serines and threonines of nuclear and cytoplasmic proteins. It appears to be as widespread as phosphorylation. While phosphorylation is recognized as a fundamental mechanism for controlling protein function, less is known about the specific roles of O-GlcNAc modification. However, evidence is building that O-GlcNAc may compete with phosphate at some sites of attachment. Aberrant O-GlcNAc modification has been linked to several disease states, including diabetes and Alzheimer's disease. Regulated enzymes catalyzing the addition (O-GlcNAc transferase, OGT) and removal (O-GlcNAcase) of the modification have been cloned and OGT is required for life at the single cell level. Here we review the properties of O-GlcNAc that suggest it is a regulatory modification analogous to phosphorylation. We also discuss the use of comparative functional proteomics to elucidate functions for this ubiquitous intracellular carbohydrate modification.

PMID:
11522385
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center