Send to

Choose Destination
See comment in PubMed Commons below
Carbohydr Res. 2001 Aug 30;334(3):165-76.

Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal?

Author information

  • 1Department of Biochemistry, Biophysics and Macromolecular Chemistry, Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, I-34127 Trieste, Italy.

Erratum in

  • Carbohydr Res. 2003 May 23;338(11):1259.


Physico-chemical properties of the trehalose-water system are reviewed with special reference to the transformations that may shed light on the mechanism of trehalose bio-protection. Critical analysis of solution thermodynamics is made in order to scrutinize trehalose properties often called 'anomalous' and to check the consistency of literature results. Discussion on the conversion between the solid state polymorphic forms is given, with a special emphasis of the transformations involving the newly identified anhydrous crystalline form of alpha,alpha-trehalose, TRE(alpha). This exotic crystal is almost 'isomorphous' with the dihydrate crystal structure, and possesses the unique feature of reversibly absorbing water to produce the dihydrate, without changing the main structural features. The reversible process could play a functional role in the well-known ability of this sugar to protect biological structures from damage during desiccation. The final aim of the paper is to add some new insights into and to reconcile previous hypotheses for the peculiar 'in vivo' action of trehalose.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center