Send to

Choose Destination
Virology. 2001 Aug 15;287(1):18-29.

An alpha-helical domain within the carboxyl terminus of herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is associated with cell fusion and resistance to heparin inhibition of cell fusion.

Author information

Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA.


Previous studies from our laboratory indicated that a 28-amino-acid carboxyl-terminal truncation of gB caused extensive virus-induced cell fusion (Baghian et al., 1993, J Virol 67, 2396-2401). We tested the ability of additional truncations and mutations within gB to cause cell fusion in the recently established virus-free cell fusion assay (Turner et al., 1998, J. Virol. 72, 873-875). Deletion of the carboxyl-terminal 28 amino acids of gB (gBDelta28), which removed part of the predicted alpha-helical structure H17b, caused extensive cell fusion. A gB truncation specified by gBDelta36, which removed the entire H17b domain, caused as much cell fusion as the gBDelta28 truncation. Similarly, gB(A874P) containing a substitution of an Ala with Pro within H17b caused cell fusion. Heparin, a gB-specific inhibitor of virus-induced cell fusion, inhibited both wild-type gB and gB(syn3)-mediated cell fusion. In contrast, fusion of cells transfected with gB(Delta28), gB(Delta36), or gB(A874P) was resistant to heparin inhibition of cell fusion. We concluded the following: (1) The predicted alpha-helical structure of H17b within the carboxyl terminus of gB is involved in both virus-induced and virus-free cell fusion. (2) Heparin is a specific inhibitor of gB-mediated fusion in both systems. (3) Resistance to heparin inhibition of gB-mediated cell fusion is associated with the predicted alpha-helical structure H17b within the carboxyl terminus of gB.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center