Format

Send to

Choose Destination
Bone. 2001 Aug;29(2):185-91.

Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women.

Author information

1
Ludwig Boltzmann Institute of Osteology, Fourth Medical Department, Hanusch Krankenhaus and Unfallkrankenhaus Meidling, Vienna, Austria.

Abstract

The strength of bone is correlated with bone mass but is also influenced significantly by other factors such as structural properties of the matrix (e.g., collagen mutations) and the mineral. Changes at all levels of this organization could contribute to fracture risk. We investigated the effects of alendronate (Aln) treatment on the density of mineralization and the ultrastructure of the mineral/collagen composite, size and habitus of mineral particles in iliac cancellous bone, as well as on the porosity of iliac cortical bone from postmenopausal osteoporotic women. Twenty-four transiliac bone biopsies from Phase III Aln (10 mg/day) trials (placebo and Aln after 2 and 3 years of treatment, n = 6 per group) were studied. The mineral structure was investigated by quantitative backscattered electron imaging (qBEI) and by scanning small-angle X-ray scattering (scanning-SAXS). qBEI histograms reflect the bone mineralization density distribution (BMDD), whereas SAXS patterns characterize the size and arrangement of the mineral particles in bone. We found that: (i) the relative calcium content of osteoporotic bone was significantly lower than that of data-base controls; (ii) mineralization was significantly higher and more uniform after Aln treatment; (iii) size and habitus of the mineral particles was not different between placebo and Aln-treated groups; and (iv) the porosity of cortical bone was reduced significantly by Aln treatment. We conclude that Aln treatment increases the degree and uniformity of bone matrix mineralization without affecting the size and habitus of the mineral crystals. It also decreases the porosity of the corticalis. Together these effects may contribute to the observed reduction in fractures.

PMID:
11502482
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center