Send to

Choose Destination
Appl Microbiol Biotechnol. 2001 Jul;56(1-2):249-54.

The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures.

Author information

Laboratoire de Génie des Procédés Alimentaires et Biotechnologiques, ENSBANA, Dijon, France.


Membrane fluidity in whole cells of Saccharomyces cerevisiae W303-1A was estimated from fluorescence polarization measurements using the membrane probe, 1,6-diphenyl-1,3,5-hexatriene, over a wide range of temperatures (6-35 degrees C) and at seven levels of osmotic pressure between 1.38 MPa and 133.1 MPa. An increase in phase transition temperatures was observed with increasing osmotic pressure. At 1.38 MPa, a phase transition temperature of 12 +/- 2 degrees C was observed, which increased to 17 +/- 4 degrees C at 43.7 MPa, 21+/- 7 degrees C at 61.8 MPa, and 24 +/- 9 degrees C at an osmotic pressure of 133.1 MPa. From these results we infer that, with increases in osmotic pressure, the change in phospholipid conformation occurs over a larger temperature range. These results allow the representation of membrane fluidity as a function of temperature and osmotic pressure. Osmotic shocks were applied at two levels of osmotic pressure and at nine temperatures, in order to relate membrane conformation to cell viability.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center