Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Oct 19;276(42):39213-9. Epub 2001 Aug 9.

Id-1, ITF-2, and Id-2 comprise a network of helix-loop-helix proteins that regulate mammary epithelial cell proliferation, differentiation, and apoptosis.

Author information

1
Geraldine Brush Cancer Research Institute, California Pacific Medical Center, San Francisco, California 94115, USA.

Abstract

Mammary epithelial cells proliferate, invade the stroma, differentiate, and die in adult mammals by mechanisms that are poorly understood. We found that Id-1, an inhibitor of basic helix-loop-helix transcription factors, regulates mammary epithelial cell growth, differentiation, and invasion in culture. Here, we show that Id-1 is expressed highly during mammary development in virgin mice and during early pregnancy, when proliferation and invasion are high. During mid-pregnancy, Id-1 expression declined to undetectable levels as the epithelium differentiated fully. Surprisingly, Id-1 increased during involution, when the epithelium undergoes extensive apoptosis. To determine whether Id-1 regulates both proliferation and apoptosis, we constitutively expressed Id-1 in mammary epithelial cell cultures. Id-1 stimulated proliferation in sparse cultures but induced apoptosis in dense cultures, which reflect epithelial cell density during early pregnancy and involution, respectively. To understand how Id-1 acts, we screened a yeast two-hybrid library from differentiating mammary epithelial cells and identified ITF-2, a basic helix-loop-helix transcription factor, as an Id-1-interacting protein. Overexpression of ITF-2 significantly reduced Id-1-stimulated proliferation and apoptosis. We show further that, in contrast to Id-1, Id-2 was expressed highly in differentiated mammary epithelial cells in vivo and in culture. In culture, Id-2 antisense transcripts blocked differentiation. Our results suggest that Id-1, ITF-2, and Id-2 comprise a network of interacting molecular switches that govern mammary epithelial cell phenotypes.

PMID:
11498533
DOI:
10.1074/jbc.M104473200
[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center