Send to

Choose Destination
Curr Opin Struct Biol. 2001 Aug;11(4):420-6.

Crystal structure of rhodopsin: implications for vision and beyond.

Author information

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.


A heptahelical transmembrane bundle is a common structural feature of G-protein-coupled receptors (GPCRs) and bacterial retinal-binding proteins, two functionally distinct groups of membrane proteins. Rhodopsin, a photoreceptor protein involved in photopic (rod) vision, is a prototypical GPCR that contains 11-cis-retinal as its intrinsic chromophore ligand. Therefore, uniquely, rhodopsin is a GPCR and also a retinal-binding protein, but is not found in bacteria. Rhodopsin functions as a typical GPCR in processes that are triggered by light and photoisomerization of its ligand. Bacteriorhodopsin is a light-driven proton pump with an all-trans-retinal chromophore that photoisomerizes to 13-cis-retinal. The recent crystal structure determination of bovine rhodopsin revealed a structure that is not similar to previously established bacteriorhodopsin structures. Both groups of proteins have a heptahelical transmembrane bundle structure, but the helices are arranged differently. The activation of rhodopsin involves rapid cis-trans photoisomerization of the chromophore, followed by slower and incompletely defined structural rearrangements. For rhodopsin and related receptors, a common mechanism is predicted for the formation of an active state intermediate that is capable of interacting with G proteins.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center