Observation of individual vortices trapped along columnar defects in high-temperature superconductors

Nature. 2001 Aug 9;412(6847):620-2. doi: 10.1038/35088021.

Abstract

Many superconductors do not entirely expel magnetic flux-rather, magnetic flux can penetrate the superconducting state in the form of vortices. Moving vortices create resistance, so they must be 'pinned' to permit dissipationless current flow. This is a particularly important issue for the high-transition-temperature superconductors, in which the vortices move very easily. Irradiation of superconducting samples by heavy ions produces columnar defects, which are considered to be the optimal pinning traps when the orientation of the column coincides with that of the vortex line. Although columnar defect pinning has been investigated using macroscopic techniques, it has hitherto been impossible to resolve individual vortices intersecting with individual defects. Here we achieve the resolution required to image vortex lines and columnar defects in Bi2Sr2CaCu2O8+delta (Bi-2212) thin films, using a 1-MV field-emission electron microscope. For our thin films, we find that the vortex lines at higher temperatures are trapped and oriented along tilted columnar defects, irrespective of the orientation of the applied magnetic field. At lower temperatures, however, vortex penetration always takes place perpendicular to the film plane, suggesting that intrinsic 'background' pinning in the material now dominates.