Format

Send to

Choose Destination
See comment in PubMed Commons below
Development. 2001 Jun;128(11):1971-81.

SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells.

Author information

1
Center for Immunology and Inflammatory Diseases, Division Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. rklein@partners.org

Abstract

The chemokine SDF-1 alpha (CXC12) and its receptor CXCR4 have been shown to play a role in the development of normal cerebellar cytoarchitecture. We report here that SDF-1 alpha both induces chemotactic responses in granule precursor cells and enhances granule cell proliferative responses to Sonic hedgehog. Chemotactic and proliferative responses to SDF-1 alpha are greater in granule cells obtained from cerebella of animals in the first postnatal week, coinciding with the observed in vivo peak in cerebellar CXCR4 expression. SDF-1 alpha activation of neuronal CXCR4 differs from activation of CXCR4 in leukocytes in that SDF-1 alpha-induced calcium flux is activity dependent, requiring predepolarization with KCl or pretreatment with glutamate. However, as is the case in leukocytes, neuronal responses to SDF-1 alpha are all abolished by pretreatment of granule cells with pertussis toxin, suggesting they occur through G(alpha i) activation. In conclusion, SDF-1 alpha plays a role in two important processes of granule cell maturation - proliferation and migration - assisting in the achievement of appropriate cell number and position in the cerebellar cortex.

PMID:
11493520
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center