Send to

Choose Destination
See comment in PubMed Commons below
Eur J Neurosci. 2001 Jul;14(1):103-17.

Antisense oligodeoxynucleotide-induced suppression of basal forebrain NMDA-NR1 subunits selectively impairs visual attentional performance in rats.

Author information

Department of Psychology, The Ohio State University, 27 Townshend Hall, Columbus, OH 43210, USA.


It is generally agreed that basal forebrain neuronal circuits contribute to the mediation of the ability to detect, select and discriminate signals, to suppress the processing of irrelevant information, and to allocate processing resources to competing tasks. Rats were trained in a task designed to assess sustained attention, or in a cued discrimination task that did not tax attentional processes. Animals were equipped with guide cannula to infuse bilaterally antisense oligodeoxynucleotides (ODNs) against the N-methyl-D-aspartate (NMDA) NR1 subunits, or missense ODNs, into the substantia innominata of the basal forebrain. Infusions of antisense or missense ODNs did not affect cued visual discrimination performance. Infusions of antisense ODNs dose-dependently impaired sustained attention performance by selectively decreasing the animals' ability to detect signals while their ability to reject nonsignal trials remained unchanged. The detrimental attentional effects of antisense infusions were maximal 24 h after the third and final infusion, and performance returned to baseline 24 h later. Missense infusions did not affect attentional performance. Separate experiments demonstrated extensive suppression of NR1 subunit immunoreactivity in the substantia innominata. Furthermore, infusions of antisense did not produce neurotoxic effects in that region as demonstrated by the Fluoro-Jade


The present data support the hypothesis that NMDA receptor (NMDAR) stimulation in the basal forebrain, largely via glutamatergic inputs originating in the prefrontal cortex, represents a necessary mechanism to activate the basal forebrain corticopetal system for mediation of attentional performance.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center