Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2001 Aug;159(2):513-25.

Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice.

Author information

  • 1Department of Surgery, College of Physicians & Surgeons, Columbia University, 630 W. 168th St., New York, NY 10032, USA.

Abstract

Receptor for advanced glycation end-products (RAGE), and two of its ligands, AGE and EN-RAGEs (members of the S100/calgranulin family of pro-inflammatory cytokines), display enhanced expression in slowly resolving full-thickness excisional wounds developed in genetically diabetic db+/db+ mice. We tested the concept that blockade of RAGE, using soluble(s) RAGE, the extracellular ligand-binding domain of the receptor, would enhance wound closure in these animals. Administration of sRAGE accelerated the development of appropriately limited inflammatory cell infiltration and activation in wound foci. In parallel with accelerated wound closure at later times, blockade of RAGE suppressed levels of cytokines; tumor necrosis factor-alpha; interleukin-6; and matrix metalloproteinases-2, -3, and -9. In addition, generation of thick, well-vascularized granulation tissue was enhanced, in parallel with increased levels of platelet-derived growth factor-B and vascular endothelial growth factor. These findings identify a central role for RAGE in disordered wound healing associated with diabetes, and suggest that blockade of this receptor might represent a targeted strategy to restore effective wound repair in this disorder.

PMID:
11485910
PMCID:
PMC1850533
DOI:
10.1016/S0002-9440(10)61723-3
[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center