Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Oct 5;276(40):37585-93. Epub 2001 Aug 3.

Protein synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor.

Author information

  • 1Unit on Synapse Development and Plasticity, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

A fundamental difference between short-term and long-term forms of synaptic plasticity is the dependence on transcription and translation of new genes. Using organotypic cultures of hippocampal slices, we have investigated whether the modulation of synapses by brain-derived neurotrophic factor (BDNF) also requires protein synthesis. Long-term treatment of hippocampal slice cultures with BDNF increased the number of docked vesicles, but not that of reserve pool vesicles, at CA1 excitatory synapses. BDNF also increased the levels of the vesicle proteins synaptophysin, synaptobrevin, and synaptotagmin, without affecting the presynaptic membrane proteins syntaxin and SNAP-25, or the vesicle-binding protein synapsin-I. The increase in synaptophysin and synaptobrevin expression was moderate (2-fold) and occurred within 6 h after BDNF application. In contrast, synaptotagmin expression took 24 h to reach maximum levels (5-fold). The delayed increase in synaptotagmin was blocked by protein synthesis inhibitors, while the early increase in synaptophysin and synaptobrevin was not. Moreover, the BDNF-induced increase of synaptotagmin was blocked by inhibiting the cAMP/protein kinase A (PKA) pathway. However, BDNF did not activate PKA, and application of a PKA activator did not mimic the BDNF effect. Taken together, these results suggest a novel, protein synthesis-dependent form of BDNF modulation that requires cAMP gating.

PMID:
11483592
DOI:
10.1074/jbc.M101683200
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center