Send to

Choose Destination
Biochim Biophys Acta. 1975 Aug 5;401(1):128-36.

Kinetic analysis of blood-brain barrier transport of amino acids.


The Michaelis-Menten kinetics of blood-brain barrier transport of fourteen amino acids was investigated with a tissue-sampling, single-injection technique in the anesthetized rat. Tracer quantities of 14C-labelled amino acids and 3H2O, used as a freely diffusible internal reference, were mixed in 0.2 ml of buffered Ringer's solution and injected rapidly into a common carotid artery. Circulation was terminated by decapitation at 15s following injection. A brain uptake index (Ib) was determined from the ratio of 14C dpm in the brain tissue and the injection mixture divided by the same ratio for the 3H2O reference. Brain clearance of tracer concentration of amino acid was saturable when various concentrations of unlabeled amino acid were added to the injection solution. Double reciprocal plots of the saturation data yielded Km (mM) values that ranged from a low of 0.09 mM for arginine to a high of 0.75 mM for cycloleucine. Transport V values were determined from the relationship P = V/Km where P is the blood-brain barrier permeability constant (ml/g per min): P was calculated from the Ib for each amino acid based on a cerebral blood flow of 0.56 ml/g per min and a fractional extraction of 0.75 for the 3H2O reference 15s following carotid injection. The V values ranged from a low of 6.2 nmol/g per min for lysine to a high of 64 nmol/g per min for l-DOPA. Efflux of the tracer amino acid during the 15-s period after injection was assumed to be slow, since the rate constant of cycloleucine from brain to blood was low, 0.11 min-1.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center