Format

Send to

Choose Destination
Biochemistry. 2001 Aug 7;40(31):9317-23.

Mg2+-linked oligomerization modulates the catalytic activity of the Lon (La) protease from Mycobacterium smegmatis.

Author information

1
Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.

Abstract

Lon (La) proteases are multimeric enzymes that are activated by ATP and Mg(2+) ions and stimulated by unfolded proteins such as alpha-casein. The peptidase activity of the Lon protease from Mycobacterium smegmatis (Ms-Lon) is dependent upon both its concentration and that of Mg(2+). Addition of alpha-casein partially substitutes for Mg(2+) in activating the enzyme. In chemical dissociation experiments, higher concentrations of urea were required to inhibit Ms-Lon's catalytic activities after an addition of alpha-casein. Analytical ultracentrifugation was used to directly probe the effect of activators of peptidase activity on Ms-Lon self-association. Sedimentation velocity experiments reveal that Ms-Lon monomers are in a reversible equilibrium with oligomeric forms of the protein and that the self-association reaction is facilitated by Mg(2+) ions but not by AMP-PNP or ATP gamma S. NaCl at 100 mM facilitates oligomerization and stimulates peptidase activity at suboptimal concentrations of MgCl(2). Sedimentation equilibrium analysis shows that Ms-Lon associates to a hexamer at 50 mM Tris and 10 mM MgCl(2), at pH 8.0 and 20 degrees C, and that the assembly reaction is Mg(2+) dependent; the mole fraction of hexamer decreases with decreasing MgCl(2) to undetectable levels in 10 mM EDTA. The analysis of experiments conducted at a series of initial protein and MgCl(2) concentrations yields two assembly models: dimer <--> tetramer <--> hexamer and timer <--> hexamer, equally consistent with the data. Limited trypsin digestion, CD, and tryptophan fluorescence suggest only minor changes in secondary and tertiary structure upon Mg(2+)-linked oligomerization. These results show that activation of Ms-Lon peptidase activity requires oligomerization and that Ms-Lon self-association reaction is facilitated by its activator, Mg(2+), and stimulator, unfolded protein.

PMID:
11478899
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center